
Metody numeryczne 
wykład 7 

różniczkowanie
Michał Łaskawski 

11.01.2018



Wprowadzenie
Pochodna - szybkość zmian zmiennej zależnej w odniesieniu do zmiennej niezależnej. 

Graficzna definicja pochodnej: gdy Δx → 0, (od a do c), aproksymacja różnicowa staje się 
pochodną 

Matematyczna definicja pochodnej wywodzi się z aproksymacji różnicowej: 

y, f(x) - zmienna zależna, x - zmienna niezależna
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where dy/dx [which can also be designated as y′ or f ′(xi )]1 is the first derivative of y with
respect to x evaluated at xi. As seen in the visual depiction of Fig. 21.1c, the derivative is
the slope of the tangent to the curve at xi.

The second derivative represents the derivative of the first derivative,

d2 y
dx2

= d
dx

(
dy
dx

)
(21.8)

Thus, the second derivative tells us how fast the slope is changing. It is commonly referred
to as the curvature, because a high value for the second derivative means high curvature.

Finally, partial derivatives are used for functions that depend on more than one variable.
Partial derivatives can be thought of as taking the derivative of the function at a point with
all but one variable held constant. For example, given a function f that depends on both x
and y, the partial derivative of f with respect to x at an arbitrary point (x, y) is defined as

∂ f
∂x

= lim
"x→0

f (x + "x, y) − f (x, y)

"x
(21.9)

Similarly, the partial derivative of f with respect to y is defined as

∂ f
∂y

= lim
"y→0

f (x, y + "y) − f (x, y)

"y
(21.10)

To get an intuitive grasp of partial derivatives, recognize that a function that depends on
two variables is a surface rather than a curve. Suppose you are mountain climbing and have
access to a function f that yields elevation as a function of longitude (the east-west oriented

1 The form dy/dx was devised by Leibnitz, whereas y′ is attributed to Lagrange. Note that Newton used the 
so-called dot notation: ẏ. Today, the dot notation is usually used for time derivatives.
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FIGURE 21.1
The graphical definition of a derivative: as "x approaches zero in going from (a) to (c), the difference approximation
becomes a derivative. 
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Now suppose that you were given the reverse problem. That is, you were asked to de-
termine velocity based on the jumper’s position as a function of time. Because it is the in-
verse of integration, differentiation could be used to make the determination:

v(t) = dz(t)
dt

(21.3)

Substituting Eq. (21.2) into Eq. (21.3) and differentiating would bring us back to Eq. (21.1).
Beyond velocity, you might also be asked to compute the jumper’s acceleration. To

do this, we could either take the first derivative of velocity, or the second derivative of
displacement:

a(t) = dv(t)
dt

= d2z(t)
dt2 (21.4)

In either case, the result would be

a(t) = g sech2
(√

gcd

m
t
)

(21.5)

Although a closed-form solution can be developed for this case, there are other func-
tions that may be difficult or impossible to differentiate analytically. Further, suppose that
there was some way to measure the jumper’s position at various times during the fall.
These distances along with their associated times could be assembled as a table of discrete
values. In this situation, it would be useful to differentiate the discrete data to determine the
velocity and the acceleration. In both these instances, numerical differentiation methods
are available to obtain solutions. This chapter will introduce you to some of these methods.

21.1 INTRODUCTION AND BACKGROUND

21.1.1 What Is Differentiation?

Calculus is the mathematics of change. Because engineers and scientists must continuously
deal with systems and processes that change, calculus is an essential tool of our profession.
Standing at the heart of calculus is the mathematical concept of differentiation.

According to the dictionary definition, to differentiate means “to mark off by differ-
ences; distinguish; . . . to perceive the difference in or between.” Mathematically, the deriva-
tive, which serves as the fundamental vehicle for differentiation, represents the rate of change
of a dependent variable with respect to an independent variable. As depicted in Fig. 21.1, the
mathematical definition of the derivative begins with a difference approximation:

!y
!x

= f (xi + !x) − f (xi )

!x
(21.6)

where y and f (x) are alternative representatives for the dependent variable and x is the
independent variable. If !x is allowed to approach zero, as occurs in moving from Fig. 21.1a
to c, the difference becomes a derivative:

dy
dx

= lim
!x→0

f (xi + !x) − f (xi )

!x
(21.7)
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Wprowadzenie
dy/dx ( lub y’ lub f’(xi) ) jest pierwszą pochodną y  w odniesieniu do x w punkcie xi.  

Pochodna jest nachyleniem stycznej do krzywej w punkcie xi. 

Druga pochodna jest pochodną pierwszej pochodnej. 

Druga pochodna informuje o tym jak szybko zmienia się nachylenie. 
‣ Druga pochodna często nazywana jest krzywizną, bowiem większa wartość drugiej pochodnej oznacza 

większą krzywiznę krzywej. 

Pochodne cząstkowe są używane dla funkcji, które zależą od więcej niż jednej zmiennej. 
‣ Pochodna cząstkowa może być interpretowana jako wyznaczenie pochodnej funkcji w punkcie, której 

wszystkie zmienne oprócz jednej są ustalone. 

Przykład: pochodna funkcji f(x,y): 
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where dy/dx [which can also be designated as y′ or f ′(xi )]1 is the first derivative of y with
respect to x evaluated at xi. As seen in the visual depiction of Fig. 21.1c, the derivative is
the slope of the tangent to the curve at xi.
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Thus, the second derivative tells us how fast the slope is changing. It is commonly referred
to as the curvature, because a high value for the second derivative means high curvature.

Finally, partial derivatives are used for functions that depend on more than one variable.
Partial derivatives can be thought of as taking the derivative of the function at a point with
all but one variable held constant. For example, given a function f that depends on both x
and y, the partial derivative of f with respect to x at an arbitrary point (x, y) is defined as

∂ f
∂x

= lim
"x→0

f (x + "x, y) − f (x, y)

"x
(21.9)

Similarly, the partial derivative of f with respect to y is defined as

∂ f
∂y

= lim
"y→0

f (x, y + "y) − f (x, y)

"y
(21.10)

To get an intuitive grasp of partial derivatives, recognize that a function that depends on
two variables is a surface rather than a curve. Suppose you are mountain climbing and have
access to a function f that yields elevation as a function of longitude (the east-west oriented

1 The form dy/dx was devised by Leibnitz, whereas y′ is attributed to Lagrange. Note that Newton used the 
so-called dot notation: ẏ. Today, the dot notation is usually used for time derivatives.
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Różniczkowanie w inżynierii i nauce
Przykład: Prawo przewodnictwa cieplnego (prawo Fouriera) 

Dla przypadku jednowymiarowego: 

gdzie: q(x) = strumień ciepła (W/m2), k = współczynnik przewodności cieplnej (W/(m K)), T 
= temperatura (K), x = odległość (m). 

Dla rozważanego przypadku, pochodna lub inaczej gradient jest miarą intensywności 
przestrzennej zmiany temperatury, która jest siłą napędową przepływu ciepła. 

Pozytywny przepływ określony jest ujemnym gradientem (stąd znak: — we wzorze)
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heat flow

T

x

Direction of
heat flow
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" 0

!T
!i
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FIGURE 21.2
Graphical depiction of a temperature gradient. Because heat moves “downhill” from high to low
temperature, the flow in (a) is from left to right. However, due to the orientation of Cartesian
coordinates, the slope is negative for this case. Thus, a negative gradient leads to a positive
flow. This is the origin of the minus sign in Fourier’s law of heat conduction. The reverse case is
depicted in (b), where the positive gradient leads to a negative heat flow from right to left. 
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x axis) and latitude (the north-south oriented y axis). If you stop at a particular point (x0, y0),
the slope to the east would be ∂f(x0, y0)/∂x, and the slope to the north would be ∂f(x0, y0)/∂y.

21.1.2 Differentiation in Engineering and Science

The differentiation of a function has so many engineering and scientific applications that
you were required to take differential calculus in your first year at college. Many specific ex-
amples of such applications could be given in all fields of engineering and science. Differ-
entiation is commonplace in engineering and science because so much of our work involves
characterizing the changes of variables in both time and space. In fact, many of the laws and
other generalizations that figure so prominently in our work are based on the predictable
ways in which change manifests itself in the physical world. A prime example is Newton’s
second law, which is not couched in terms of the position of an object but rather in its change
with respect to time.

Aside from such temporal examples, numerous laws involving the spatial behavior of
variables are expressed in terms of derivatives. Among the most common of these are the
constitutive laws that define how potentials or gradients influence physical processes. For
example, Fourier’s law of heat conduction quantifies the observation that heat flows from
regions of high to low temperature. For the one-dimensional case, this can be expressed
mathematically as

q = −k
dT
dx

(21.11)

where q (x) = heat flux (W/m2), k = coefficient of thermal conductivity [W/(m · K)], T =
temperature (K), and x = distance (m). Thus, the derivative, or gradient, provides a measure
of the intensity of the spatial temperature change, which drives the transfer of heat (Fig. 21.2).
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Różniczkowanie w inżynierii i nauce
Przykład: Jednowymiarowe formuły istotnych praw często wykorzystywanych w inżynierii 
i nauce:  

Wybrane powyższe prawa, definiują modele matematyczne, które wykorzystywane są w 
wielu obszarach nauki i techniki. 

Możliwość dokładnej estymacji wartości pochodnej, jest istotnym aspektem sprawnej i 
wydajnej pracy w danej dziedzinie nauki i techniki.

21.2 HIGH-ACCURACY DIFFERENTIATION FORMULAS 525

Similar laws provide workable models in many other areas of engineering and science,
including the modeling of fluid dynamics, mass transfer, chemical reaction kinetics, elec-
tricity, and solid mechanics (Table 21.1). The ability to accurately estimate derivatives is an
important facet of our capability to work effectively in these areas.

Beyond direct engineering and scientific applications, numerical differentiation is also
important in a variety of general mathematical contexts including other areas of numerical
methods. For example, recall that in Chap. 6 the secant method was based on a finite-
difference approximation of the derivative. In addition, probably the most important appli-
cation of numerical differentiation involves the solution of differential equations. We have
already seen an example in the form of Euler’s method in Chap. 1. In Chap. 24, we will in-
vestigate how numerical differentiation provides the basis for solving boundary-value
problems of ordinary differential equations.

These are just a few of the applications of differentiation that you might face regularly
in the pursuit of your profession. When the functions to be analyzed are simple, you will nor-
mally choose to evaluate them analytically. However, it is often difficult or impossible when
the function is complicated. In addition, the underlying function is often unknown and de-
fined only by measurement at discrete points. For both these cases, you must have the ability
to obtain approximate values for derivatives, using numerical techniques as described next.

21.2 HIGH-ACCURACY DIFFERENTIATION FORMULAS
We have already introduced the notion of numerical differentiation in Chap. 4. Recall that
we employed Taylor series expansions to derive finite-difference approximations of deriva-
tives. In Chap. 4, we developed forward, backward, and centered difference approximations
of first and higher derivatives. Remember that, at best, these estimates had errors that were
O(h2)—that is, their errors were proportional to the square of the step size. This level of
accuracy is due to the number of terms of the Taylor series that were retained during the

TABLE 21.1 The one-dimensional forms of some constitutive laws commonly used in
engineering and science.

Law Equation Physical Area Gradient Flux Proportionality

Fourier’s law q = −k
dT
dx

Heat conduction Temperature Heat flux Thermal
Conductivity

Fick’s law J = −D
dc
dx

Mass diffusion Concentration Mass flux Diffusivity

Darcy’s law q = −k
dh
dx

Flow through Head Flow flux Hydraulic
porous media Conductivity

Ohm’s law J = −σ
dV
dx

Current flow Voltage Current flux Electrical
Conductivity

Newton’s τ = µ
du
dx

Fluids Velocity Shear Dynamic
viscosity law Stress Viscosity

Hooke’s law σ = E
#L
L

Elasticity Deformation Stress Young’s
Modulus
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Twierdzenie Tylora stwierdza, że każdą gładką funkcję można aproksymować przy pomocy 
wielomianu. Szeregi Tylora są matematycznym narzędziem, który to umożliwia.  

Aproksymacja funkcji f(x) = - 0.1 x 4 - 0.15 x 3 - 0.5 x 2 - 0.25 x + 1.2 dla x = 1.  

Kompletny szereg Tylora: 
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A useful way to gain insight into the Taylor series is to build it term by term. A good
problem context for this exercise is to predict a function value at one point in terms of the
function value and its derivatives at another point.

Suppose that you are blindfolded and taken to a location on the side of a hill facing
downslope (Fig. 4.7). We’ll call your horizontal location xi and your vertical distance with
respect to the base of the hill f (xi ). You are given the task of predicting the height at a
position xi+1 , which is a distance h away from you.

At first, you are placed on a platform that is completely horizontal so that you have no
idea that the hill is sloping down away from you. At this point, what would be your best
guess at the height at xi+1 ? If you think about it (remember you have no idea whatsoever
what’s in front of you), the best guess would be the same height as where you’re standing
now! You could express this prediction mathematically as

f (xi+1 ) ∼= f (xi ) (4.9)

This relationship, which is called the zero-order approximation, indicates that the value of
f at the new point is the same as the value at the old point. This result makes intuitive sense
because if xi and xi+1 are close to each other, it is likely that the new value is probably sim-
ilar to the old value.

Equation (4.9) provides a perfect estimate if the function being approximated is, in
fact, a constant. For our problem, you would be right only if you happened to be standing
on a perfectly flat plateau. However, if the function changes at all over the interval, addi-
tional terms of the Taylor series are required to provide a better estimate.

So now you are allowed to get off the platform and stand on the hill surface with one
leg positioned in front of you and the other behind. You immediately sense that the front

1.0
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0

h

Zero order
f (x) f (xi)

xi ! 0 xi"1 ! 1 x

f (xi"1)

f (xi"1) ! f (xi) " f #(xi)h  "
f ##(xi)

2! h 2

f (xi"1) ! f (xi) " f #(xi)h

f (xi"1) ! f (xi)

Second order

True

First order

FIGURE 4.7
The approximation of f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2 at x = 1 by 
zero-order, first-order, and second-order Taylor series expansions.
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foot is lower than the back foot. In fact, you’re allowed to obtain a quantitative estimate of
the slope by measuring the difference in elevation and dividing it by the distance between
your feet. 

With this additional information, you’re clearly in a better position to predict the
height at f (xi+1). In essence, you use the slope estimate to project a straight line out to
xi+1. You can express this prediction mathematically by

f (xi+1) ∼= f (xi ) + f ′(xi )h (4.10)

This is called a first-order approximation because the additional first-order term consists of
a slope f ′(xi ) multiplied by h, the distance between xi and xi+1. Thus, the expression is
now in the form of a straight line that is capable of predicting an increase or decrease of the
function between xi and xi+1.

Although Eq. (4.10) can predict a change, it is only exact for a straight-line, or linear,
trend. To get a better prediction, we need to add more terms to our equation. So now you
are allowed to stand on the hill surface and take two measurements. First, you measure the
slope behind you by keeping one foot planted at xi and moving the other one back a dis-
tance !x . Let’s call this slope f ′

b(xi ). Then you measure the slope in front of you by keep-
ing one foot planted at xi and moving the other one forward !x . Let’s call this slope
f ′

f (xi ). You immediately recognize that the slope behind is milder than the one in front.
Clearly the drop in height is “accelerating” downward in front of you. Thus, the odds are
that f (xi ) is even lower than your previous linear prediction.

As you might expect, you’re now going to add a second-order term to your equation
and make it into a parabola. The Taylor series provides the correct way to do this as in

f (xi+1) ∼= f (xi ) + f ′(xi )h + f ′′(xi )

2!
h2 (4.11)

To make use of this formula, you need an estimate of the second derivative. You can use the
last two slopes you determined to estimate it as

f ′′(xi+1) ∼=
f ′

f (xi ) − f ′
b(xi )

!x
(4.12)

Thus, the second derivative is merely a derivative of a derivative; in this case, the rate of
change of the slope.

Before proceeding, let’s look carefully at Eq. (4.11). Recognize that all the values
subscripted i represent values that you have estimated. That is, they are numbers. Conse-
quently, the only unknowns are the values at the prediction position xi+1. Thus, it is a qua-
dratic equation of the form

f (h) ∼= a2h2 + a1h + a0

Thus, we can see that the second-order Taylor series approximates the function with a second-
order polynomial.

Clearly, we could keep adding more derivatives to capture more of the function’s cur-
vature. Thus, we arrive at the complete Taylor series expansion

f (xi+1) = f (xi ) + f ′(xi )h + f ′′(xi )

2!
h2+ f (3)(xi )

3!
h3 + · · · + f (n)(xi )

n!
hn + Rn (4.13)
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Note that because Eq. (4.13) is an infinite series, an equal sign replaces the approximate
sign that was used in Eqs. (4.9) through (4.11). A remainder term is also included to
account for all terms from n + 1 to infinity:

Rn = f (n +1)(ξ)

(n + 1)!
h n +1 (4.14)

where the subscript n connotes that this is the remainder for the n th-order approximation
and ξ is a value of x that lies somewhere between xi and xi+1. 

We can now see why the Taylor theorem states that any smooth function can be ap-
proximated as a polynomial and that the Taylor series provides a means to express this idea
mathematically.

In general, the n th-order Taylor series expansion will be exact for an n th-order poly-
nomial. For other differentiable and continuous functions, such as exponentials and sinu-
soids, a finite number of terms will not yield an exact estimate. Each additional term will
contribute some improvement, however slight, to the approximation. This behavior will be
demonstrated in Example 4.3. Only if an infinite number of terms are added will the series
yield an exact result.

Although the foregoing is true, the practical value of Taylor series expansions is that,
in most cases, the inclusion of only a few terms will result in an approximation that is close
enough to the true value for practical purposes. The assessment of how many terms are
required to get “close enough” is based on the remainder term of the expansion (Eq. 4.14).
This relationship has two major drawbacks. First, ξ is not known exactly but merely lies
somewhere between xi and xi+1. Second, to evaluate Eq. (4.14), we need to determine the
(n + 1)th derivative of f (x). To do this, we need to know f (x). However, if we knew
f (x), there would be no need to perform the Taylor series expansion in the present
context!

Despite this dilemma, Eq. (4.14) is still useful for gaining insight into truncation
errors. This is because we do have control over the term h in the equation. In other words,
we can choose how far away from x we want to evaluate f (x), and we can control the num-
ber of terms we include in the expansion. Consequently, Eq. (4.14) is often expressed as

Rn = O(h n +1)

where the nomenclature O(h n +1) means that the truncation error is of the order of h n +1.
That is, the error is proportional to the step size h raised to the (n + 1)th power. Although
this approximation implies nothing regarding the magnitude of the derivatives that multi-
ply h n +1, it is extremely useful in judging the comparative error of numerical methods
based on Taylor series expansions. For example, if the error is O(h ), halving the step size
will halve the error. On the other hand, if the error is O(h 2 ), halving the step size will quar-
ter the error.

In general, we can usually assume that the truncation error is decreased by the addition
of terms to the Taylor series. In many cases, if h is sufficiently small, the first- and other
lower-order terms usually account for a disproportionately high percent of the error. Thus,
only a few terms are required to obtain an adequate approximation. This property is illus-
trated by the following example.
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Szeregi Tylora
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Szeregi Tylora
Reszta szeregu Tylora: 

jest równa: 

Jest to błąd obcięcia rzędu hn+1. 

Błąd ten jest proporcjonalny do kroku h podniesionego do n+1 potęgi. 

Przykład:  
Jeżeli błąd jest rzędu O(h), podzielenie przedziału na połowę, zmniejsza błąd o połowę. 
Jeżeli błąd jest rzędu O(h2), podział przedziału na połowę zmniejszy błąd czterokrotnie. 

Ogólnie można przyjąć, że zaokrąglenie błędu zmniejsza się przez dodawanie kolejnych 
fragmentów szeregu Tylora.  

W wielu przypadkach jeżeli krok jest wystarczająco mały, wtedy szeregi niskiego rzędu 
wystarczają do uzyskania zadowalającej dokładności.
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where the nomenclature O(h n +1) means that the truncation error is of the order of h n +1.
That is, the error is proportional to the step size h raised to the (n + 1)th power. Although
this approximation implies nothing regarding the magnitude of the derivatives that multi-
ply h n +1, it is extremely useful in judging the comparative error of numerical methods
based on Taylor series expansions. For example, if the error is O(h ), halving the step size
will halve the error. On the other hand, if the error is O(h 2 ), halving the step size will quar-
ter the error.

In general, we can usually assume that the truncation error is decreased by the addition
of terms to the Taylor series. In many cases, if h is sufficiently small, the first- and other
lower-order terms usually account for a disproportionately high percent of the error. Thus,
only a few terms are required to obtain an adequate approximation. This property is illus-
trated by the following example.

cha01102_ch04_088-122.qxd  12/17/10  8:00 AM  Page 106

106 ROUNDOFF AND TRUNCATION ERRORS

Note that because Eq. (4.13) is an infinite series, an equal sign replaces the approximate
sign that was used in Eqs. (4.9) through (4.11). A remainder term is also included to
account for all terms from n + 1 to infinity:

Rn = f (n +1)(ξ)

(n + 1)!
h n +1 (4.14)

where the subscript n connotes that this is the remainder for the n th-order approximation
and ξ is a value of x that lies somewhere between xi and xi+1. 

We can now see why the Taylor theorem states that any smooth function can be ap-
proximated as a polynomial and that the Taylor series provides a means to express this idea
mathematically.

In general, the n th-order Taylor series expansion will be exact for an n th-order poly-
nomial. For other differentiable and continuous functions, such as exponentials and sinu-
soids, a finite number of terms will not yield an exact estimate. Each additional term will
contribute some improvement, however slight, to the approximation. This behavior will be
demonstrated in Example 4.3. Only if an infinite number of terms are added will the series
yield an exact result.

Although the foregoing is true, the practical value of Taylor series expansions is that,
in most cases, the inclusion of only a few terms will result in an approximation that is close
enough to the true value for practical purposes. The assessment of how many terms are
required to get “close enough” is based on the remainder term of the expansion (Eq. 4.14).
This relationship has two major drawbacks. First, ξ is not known exactly but merely lies
somewhere between xi and xi+1. Second, to evaluate Eq. (4.14), we need to determine the
(n + 1)th derivative of f (x). To do this, we need to know f (x). However, if we knew
f (x), there would be no need to perform the Taylor series expansion in the present
context!

Despite this dilemma, Eq. (4.14) is still useful for gaining insight into truncation
errors. This is because we do have control over the term h in the equation. In other words,
we can choose how far away from x we want to evaluate f (x), and we can control the num-
ber of terms we include in the expansion. Consequently, Eq. (4.14) is often expressed as

Rn = O(h n +1)

where the nomenclature O(h n +1) means that the truncation error is of the order of h n +1.
That is, the error is proportional to the step size h raised to the (n + 1)th power. Although
this approximation implies nothing regarding the magnitude of the derivatives that multi-
ply h n +1, it is extremely useful in judging the comparative error of numerical methods
based on Taylor series expansions. For example, if the error is O(h ), halving the step size
will halve the error. On the other hand, if the error is O(h 2 ), halving the step size will quar-
ter the error.

In general, we can usually assume that the truncation error is decreased by the addition
of terms to the Taylor series. In many cases, if h is sufficiently small, the first- and other
lower-order terms usually account for a disproportionately high percent of the error. Thus,
only a few terms are required to obtain an adequate approximation. This property is illus-
trated by the following example.

cha01102_ch04_088-122.qxd  12/17/10  8:00 AM  Page 106

(7)

(8)



Różniczkowanie numeryczne
Różnica skończona może być przedstawiona przy pomocy wzoru: 

lub 

gdzie, h jest krokiem i stanowi przedział aproksymacji xi+1 - xi.  

Przedstawione zależności stanowią progresywne różnice skończone.
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numerical methods. In fact, we have already done so in our example of the bungee jumper.
Recall that the objective of both Examples 1.1 and 1.2 was to predict velocity as a function
of time. That is, we were interested in determining v(t). As specified by Eq. (4.13), v(t)
can be expanded in a Taylor series:

v(ti+1) = v(ti ) + v′(ti )(ti+1 − ti ) + v′′(ti )
2!

(ti+1 − ti )2 + · · · + Rn

Now let us truncate the series after the first derivative term:

v(ti+1) = v(ti ) + v′(ti )(ti+1 − ti ) + R1 (4.18)

Equation (4.18) can be solved for

v′(ti ) = v(ti+1) − v(ti )
ti+1 − ti︸ ︷︷ ︸
First order

approximation

− R1

ti+1 − ti︸ ︷︷ ︸
Truncation

error

(4.19)

The first part of Eq. (4.19) is exactly the same relationship that was used to approximate
the derivative in Example 1.2 [Eq. (1.11)]. However, because of the Taylor series approach,
we have now obtained an estimate of the truncation error associated with this approxima-
tion of the derivative. Using Eqs. (4.14) and (4.19) yields

R1

ti+1 − ti
= v′′(ξ)

2!
(ti+1 − ti )

or

R1

ti+1 − ti
= O(ti+1 − ti )

Thus, the estimate of the derivative [Eq. (1.11) or the first part of Eq. (4.19)] has a trunca-
tion error of order ti+1 − ti . In other words, the error of our derivative approximation
should be proportional to the step size. Consequently, if we halve the step size, we would
expect to halve the error of the derivative.

4.3.4 Numerical Differentiation

Equation (4.19) is given a formal label in numerical methods—it is called a finite differ-
ence. It can be represented generally as

f ′(xi ) = f (xi+1) − f (xi )

xi+1 − xi
+ O(xi+1 − xi ) (4.20)

or

f ′(xi ) = f (xi+1) − f (xi )

h
+ O(h) (4.21)

where h is called the step size—that is, the length of the interval over which the approxi-
mation is made, xi+1 − xi . It is termed a “forward” difference because it utilizes data at i
and i + 1 to estimate the derivative (Fig. 4.10a).
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FIGURE 4.10
Graphical depiction of (a) forward, (b) backward, and (c) centered finite-difference
approximations of the first derivative.
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Forward finite-differeces 
Progresywne różnice skończone

Backward finite-differeces 
Regresywne różnice skończone

Centered finite-differeces 
Centralne różnice skończone

(9)

(10)



Różniczkowanie numeryczne
Szereg Tylora można rozwinąć wstecz, tak aby uzyskać regresywne różnice skończone: 

Odrzucając fragmenty szeregu Tylora po pierwszej pochodnej oraz przekształcając wynik 
uzyskuje się: 

gdzie, błąd zaokrąglenia wynosi O(h). 

Odejmując od wyrażenia (13), formułę (11),  

uzyskuje się: 

którą można przedstawić w poniższy sposób: 

Jest to formuła określająca centralny iloraz różnicowy (centralne różnice skończone).
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This forward difference is but one of many that can be developed from the Taylor
series to approximate derivatives numerically. For example, backward and centered differ-
ence approximations of the first derivative can be developed in a fashion similar to the
derivation of Eq. (4.19). The former utilizes values at xi−1 and xi (Fig. 4.10 b), whereas
the latter uses values that are equally spaced around the point at which the derivative is
estimated (Fig. 4.10 c). More accurate approximations of the first derivative can be devel-
oped by including higher-order terms of the Taylor series. Finally, all the foregoing versions
can also be developed for second, third, and higher derivatives. The following sections pro-
vide brief summaries illustrating how some of these cases are derived.

Backward Difference Approximation of the First Derivative. The Taylor series can be
expanded backward to calculate a previous value on the basis of a present value, as in

f (xi−1) = f (xi ) − f ′(xi )h+ f ′′(xi )

2!
h2 − · · · (4.22)

Truncating this equation after the first derivative and rearranging yields

f ′(xi ) ∼=
f (xi ) − f (xi−1)

h
(4.23)

where the error is O(h). 

Centered Difference Approximation of the First Derivative. A third way to approxi-
mate the first derivative is to subtract Eq. (4.22) from the forward Taylor series expansion:

f (xi+1) = f (xi ) + f ′(xi )h+ f ′′(xi )

2!
h2 + · · · (4.24)

to yield

f (xi+1) = f (xi−1) + 2 f ′(xi )h+ 2
f (3)(xi )

3!
h3 + · · ·

which can be solved for

f ′(xi ) = f (xi+1) − f (xi−1)

2h
− f (3)(xi )

6
h2 + · · ·

or

f ′(xi ) = f (xi+1) − f (xi−1)

2h
− O(h2) (4.25)

Equation (4.25) is a centered finite difference representation of the first derivative.
Notice that the truncation error is of the order of h2 in contrast to the forward and backward
approximations that were of the order of h. Consequently, the Taylor series analysis yields
the practical information that the centered difference is a more accurate representation of
the derivative (Fig. 4.10 c). For example, if we halve the step size using a forward or back-
ward difference, we would approximately halve the truncation error, whereas for the cen-
tral difference, the error would be quartered.
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expanded backward to calculate a previous value on the basis of a present value, as in

f (xi−1) = f (xi ) − f ′(xi )h+ f ′′(xi )

2!
h2 − · · · (4.22)

Truncating this equation after the first derivative and rearranging yields

f ′(xi ) ∼=
f (xi ) − f (xi−1)

h
(4.23)

where the error is O(h). 

Centered Difference Approximation of the First Derivative. A third way to approxi-
mate the first derivative is to subtract Eq. (4.22) from the forward Taylor series expansion:

f (xi+1) = f (xi ) + f ′(xi )h+ f ′′(xi )

2!
h2 + · · · (4.24)

to yield

f (xi+1) = f (xi−1) + 2 f ′(xi )h+ 2
f (3)(xi )

3!
h3 + · · ·

which can be solved for

f ′(xi ) = f (xi+1) − f (xi−1)

2h
− f (3)(xi )

6
h2 + · · ·

or

f ′(xi ) = f (xi+1) − f (xi−1)

2h
− O(h2) (4.25)

Equation (4.25) is a centered finite difference representation of the first derivative.
Notice that the truncation error is of the order of h2 in contrast to the forward and backward
approximations that were of the order of h. Consequently, the Taylor series analysis yields
the practical information that the centered difference is a more accurate representation of
the derivative (Fig. 4.10 c). For example, if we halve the step size using a forward or back-
ward difference, we would approximately halve the truncation error, whereas for the cen-
tral difference, the error would be quartered.
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Różniczkowanie numeryczne
Zadanie: Wyznaczyć wartość pierwszej pochodnej funkcji  

w punkcie x = 0.5 dla kroku h = 0.5 i h = 0.25. Użyć Użyć ilorazów: progresywnego O(h), 
regresywnego O(h) oraz centralnego O(h2). Uwaga, dokładna wartość pochodnej 
określona jest zależnością: 

i w zadanym punkcie wynosi: f’(0.5) = -0.9125. 

Rozwiązanie: Dla h = 0.5, wartości funkcji wynoszą: 

Pierwsza pochodna wyznaczona progresywnym ilorazem skończonym wynosi: 

4.3 TRUNCATION ERRORS 113

EXAMPLE 4.4 Finite-Difference Approximations of Derivatives

Problem Statement. Use forward and backward difference approximations of O(h ) and
a centered difference approximation of O(h 2) to estimate the first derivative of

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

at x = 0.5 using a step size h = 0.5. Repeat the computation using h = 0.25. Note that the
derivative can be calculated directly as

f ′(x) = −0.4x3 − 0.45x2 − 1.0x − 0.25

and can be used to compute the true value as f ′(0.5) = −0.9125.

Solution. For h = 0.5, the function can be employed to determine

xi−1 = 0 f (xi−1) = 1.2

xi = 0.5 f (xi ) = 0.925

xi+1 = 1.0 f (xi+1) = 0.2

These values can be used to compute the forward difference [Eq. (4.21)],

f ′(0.5) ∼=
0.2 − 0.925

0.5
= −1.45 |εt | = 58.9%

the backward difference [Eq. (4.23)],

f ′(0.5) ∼=
0.925 − 1.2

0.5
= −0.55 |εt | = 39.7%

and the centered difference [Eq. (4.25)],

f ′(0.5) ∼=
0.2 − 1.2

1.0
= −1.0 |εt | = 9.6%

For h = 0.25,

xi−1 = 0.25 f (xi−1) = 1.10351563

xi = 0.5 f (xi ) = 0.925

xi+1 = 0.75 f (xi+1) = 0.63632813

which can be used to compute the forward difference,

f ′(0.5) ∼=
0.63632813 − 0.925

0.25
= −1.155 |εt | = 26.5%

the backward difference,

f ′(0.5) ∼=
0.925 − 1.10351563

0.25
= −0.714 |εt | = 21.7%

and the centered difference,

f ′(0.5) ∼=
0.63632813 − 1.10351563

0.5
= −0.934 |εt | = 2.4%
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Różniczkowanie numeryczne
Pierwsza pochodna wyznaczona regresywnym ilorazem skończonym wynosi:  

Pierwsza pochodna wyznaczona centralnym ilorazem skończonym wynosi: 

Dla h = 0.25, wartości funkcji wynoszą: 

Pierwsza pochodna wyznaczona progresywnym ilorazem skończonym wynosi:  

Pierwsza pochodna wyznaczona regresywnym ilorazem skończonym wynosi:  
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f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

at x = 0.5 using a step size h = 0.5. Repeat the computation using h = 0.25. Note that the
derivative can be calculated directly as

f ′(x) = −0.4x3 − 0.45x2 − 1.0x − 0.25

and can be used to compute the true value as f ′(0.5) = −0.9125.

Solution. For h = 0.5, the function can be employed to determine

xi−1 = 0 f (xi−1) = 1.2

xi = 0.5 f (xi ) = 0.925

xi+1 = 1.0 f (xi+1) = 0.2

These values can be used to compute the forward difference [Eq. (4.21)],

f ′(0.5) ∼=
0.2 − 0.925

0.5
= −1.45 |εt | = 58.9%

the backward difference [Eq. (4.23)],

f ′(0.5) ∼=
0.925 − 1.2

0.5
= −0.55 |εt | = 39.7%

and the centered difference [Eq. (4.25)],

f ′(0.5) ∼=
0.2 − 1.2

1.0
= −1.0 |εt | = 9.6%

For h = 0.25,

xi−1 = 0.25 f (xi−1) = 1.10351563

xi = 0.5 f (xi ) = 0.925

xi+1 = 0.75 f (xi+1) = 0.63632813

which can be used to compute the forward difference,

f ′(0.5) ∼=
0.63632813 − 0.925

0.25
= −1.155 |εt | = 26.5%

the backward difference,

f ′(0.5) ∼=
0.925 − 1.10351563

0.25
= −0.714 |εt | = 21.7%

and the centered difference,

f ′(0.5) ∼=
0.63632813 − 1.10351563

0.5
= −0.934 |εt | = 2.4%
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Różniczkowanie numeryczne
Pierwsza pochodna wyznaczona centralnym ilorazem skończonym wynosi: 

Dla obydwu kroków, pochodne wyznaczone ilorazem centralnym są najdokładniejsze. 

Efekt ten wynika również z analizy szeregu Tylora, podział kroku na połowę w przybliżeniu 
zmniejsza o połowę błąd obcięcia dla ilorazów progresywnych i regresywnych. Dla 
ilorazów centralnych błąd ten jest w przybliżeniu aż czterokrotnie mniejszy.
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Aproksymacja pochodnych wyższego rzędu
Aproksymacja pochodnych wyższego rzędu szeregu Tylora rozwiniętego dla f(xi+2): 

Równanie (13) należy pomnożyć przez 2 a następnie odjąć od (16): 

Rozwiązując zależność (17), uzyskuje się wzór na progresywny iloraz różnicowy drugiego 
rzędu: 

W podobny sposób uzyskuje się iloraz regresywny: 

Iloraz centralny może być wyprowadzony poprzez dodanie (11) i (13) oraz 
uporządkowanie wyniku:
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For both step sizes, the centered difference approximation is more accurate than for-
ward or backward differences. Also, as predicted by the Taylor series analysis, halving the
step size approximately halves the error of the backward and forward differences and quar-
ters the error of the centered difference.

Finite-Difference Approximations of Higher Derivatives. Besides first derivatives, the
Taylor series expansion can be used to derive numerical estimates of higher derivatives. To
do this, we write a forward Taylor series expansion for f (xi+2) in terms of f (xi ):

f (xi+2) = f (xi ) + f ′(xi )(2h) + f ′′(xi )

2!
(2h)2 + · · · (4.26)

Equation (4.24) can be multiplied by 2 and subtracted from Eq. (4.26) to give

f (xi+2) − 2 f (xi+1) = − f (xi ) + f ′′(xi )h2 + · · ·

which can be solved for

f ′′(xi ) = f (xi+2) − 2 f (xi+1) + f (xi )

h2
+ O(h) (4.27)

This relationship is called the second forward finite difference. Similar manipulations can
be employed to derive a backward version

f ′′(xi ) = f (xi ) − 2 f (xi−1) + f (xi−2)

h2
+ O(h)

A centered difference approximation for the second derivative can be derived by
adding Eqs. (4.22) and (4.24) and rearranging the result to give

f ′′(xi ) = f (xi+1) − 2 f (xi ) + f (xi−1)

h2
+ O(h2)

As was the case with the first-derivative approximations, the centered case is more accurate.
Notice also that the centered version can be alternatively expressed as

f ′′(xi ) ∼=

f (xi+1) − f (xi )

h
− f (xi ) − f (xi−1)

h
h

Thus, just as the second derivative is a derivative of a derivative, the second finite differ-
ence approximation is a difference of two first finite differences [recall Eq. (4.12)].

4.4 TOTAL NUMERICAL ERROR
The total numerical error is the summation of the truncation and roundoff errors. In general,
the only way to minimize roundoff errors is to increase the number of significant figures
of the computer. Further, we have noted that roundoff error may increase due to subtractive
cancellation or due to an increase in the number of computations in an analysis. In contrast,
Example 4.4 demonstrated that the truncation error can be reduced by decreasing the step
size. Because a decrease in step size can lead to subtractive cancellation or to an increase in
computations, the truncation errors are decreased as the roundoff errors are increased.
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Thus, just as the second derivative is a derivative of a derivative, the second finite differ-
ence approximation is a difference of two first finite differences [recall Eq. (4.12)].

4.4 TOTAL NUMERICAL ERROR
The total numerical error is the summation of the truncation and roundoff errors. In general,
the only way to minimize roundoff errors is to increase the number of significant figures
of the computer. Further, we have noted that roundoff error may increase due to subtractive
cancellation or due to an increase in the number of computations in an analysis. In contrast,
Example 4.4 demonstrated that the truncation error can be reduced by decreasing the step
size. Because a decrease in step size can lead to subtractive cancellation or to an increase in
computations, the truncation errors are decreased as the roundoff errors are increased.
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Thus, just as the second derivative is a derivative of a derivative, the second finite differ-
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4.4 TOTAL NUMERICAL ERROR
The total numerical error is the summation of the truncation and roundoff errors. In general,
the only way to minimize roundoff errors is to increase the number of significant figures
of the computer. Further, we have noted that roundoff error may increase due to subtractive
cancellation or due to an increase in the number of computations in an analysis. In contrast,
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Analiza błędów różniczkowania numerycznego
Aproksymacja pierwszej pochodnej przy pomocy centralnego ilorazu różnicowego: 

Jeżeli wartości funkcji w liczniku ilorazu różnicowego nie posiadają błędu zaokrąglenia, to 
przybliżenie pochodnej obarczone jest jedynie błędem obcięcia. 

Jednakże używając maszyny cyfrowej, wartości funkcji zawsze będą obarczone błędem 
zaokrąglenia: 

gdzie,    są błędami zaokrągleń wartości funkcji, e są skojarzonymi z nimi błędami obcięcia. 

Podstawiając powyższe zależności do równania (20), otrzymuje się:

4.4 TOTAL NUMERICAL ERROR 115

Therefore, we are faced by the following dilemma: The strategy for decreasing one
component of the total error leads to an increase of the other component. In a computation,
we could conceivably decrease the step size to minimize truncation errors only to discover
that in doing so, the roundoff error begins to dominate the solution and the total error
grows! Thus, our remedy becomes our problem (Fig. 4.11). One challenge that we face is
to determine an appropriate step size for a particular computation. We would like to choose
a large step size to decrease the amount of calculations and roundoff errors without incur-
ring the penalty of a large truncation error. If the total error is as shown in Fig. 4.11, the
challenge is to identify the point of diminishing returns where roundoff error begins to
negate the benefits of step-size reduction.

When using MATLAB, such situations are relatively uncommon because of its 15- to 16-
digit precision. Nevertheless, they sometimes do occur and suggest a sort of “numerical un-
certainty principle” that places an absolute limit on the accuracy that may be obtained using
certain computerized numerical methods. We explore such a case in the following section.

4.4.1 Error Analysis of Numerical Differentiation

As described in Sec. 4.3.4, a centered difference approximation of the first derivative can
be written as (Eq. 4.25)

f ′(xi ) = f (xi+1) − f (xi − 1)

2h
− f (3)(ξ)

6
h 2

(4.28)
True Finite-difference Truncation
value approximation error

Thus, if the two function values in the numerator of the finite-difference approximation
have no roundoff error, the only error is due to truncation.

Log step size

Lo
g 

er
ro

r

Truncation erro
r

Total error

Point of
diminishing

returns

Round-off error

FIGURE 4.11
A graphical depiction of the trade-off between roundoff and truncation error that sometimes
comes into play in the course of a numerical method. The point of diminishing returns is 
shown, where roundoff error begins to negate the benefits of step-size reduction.
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However, because we are using digital computers, the function values do include
roundoff error as in 

f (xi−1) = f̃ (xi−1) + ei−1

f (xi+1) = f̃ (xi+1) + ei+1

where the f̃ ’s are the rounded function values and the e’s are the associated roundoff
errors. Substituting these values into Eq. (4.28) gives

f ′(xi ) = f̃ (xi+1) − f̃ (xi−1)

2h
+ ei+1 − ei−1

2h
− f (3)(ξ)

6
h 2

True Finite-difference Roundoff Truncation
value approximation error error

We can see that the total error of the finite-difference approximation consists of a roundoff
error that decreases with step size and a truncation error that increases with step size.

Assuming that the absolute value of each component of the roundoff error has an
upper bound of ε, the maximum possible value of the difference ei+1 – ei!1 will be 2ε. Fur-
ther, assume that the third derivative has a maximum absolute value of M. An upper bound
on the absolute value of the total error can therefore be represented as

Total error =
∣∣∣∣∣ f ′(xi ) − f̃ (xi+1) − f̃ (xi−1)

2h

∣∣∣∣∣ ≤ ε

h
+ h 2 M

6
(4.29)

An optimal step size can be determined by differentiating Eq. (4.29), setting the result
equal to zero and solving for

h opt = 3

√
3ε

M
(4.30)

EXAMPLE 4.5 Roundoff and Truncation Errors in Numerical Differentiation

Problem Statement. In Example 4.4, we used a centered difference approximation of
O(h 2) to estimate the first derivative of the following function at x = 0.5,

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

Perform the same computation starting with h = 1. Then progressively divide the step size
by a factor of 10 to demonstrate how roundoff becomes dominant as the step size is reduced.
Relate your results to Eq. (4.30). Recall that the true value of the derivative is −0.9125. 

Solution. We can develop the following M-file to perform the computations and plot the
results. Notice that we pass both the function and its analytical derivative as arguments:

function diffex(func,dfunc,x,n)
format long
dftrue=dfunc(x);
h=1;
H(1)=h;
D(1)=(func(x+h)-func(x-h))/(2*h);
E(1)=abs(dftrue-D(1));
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However, because we are using digital computers, the function values do include
roundoff error as in 

f (xi−1) = f̃ (xi−1) + ei−1

f (xi+1) = f̃ (xi+1) + ei+1

where the f̃ ’s are the rounded function values and the e’s are the associated roundoff
errors. Substituting these values into Eq. (4.28) gives

f ′(xi ) = f̃ (xi+1) − f̃ (xi−1)

2h
+ ei+1 − ei−1

2h
− f (3)(ξ)

6
h 2

True Finite-difference Roundoff Truncation
value approximation error error

We can see that the total error of the finite-difference approximation consists of a roundoff
error that decreases with step size and a truncation error that increases with step size.

Assuming that the absolute value of each component of the roundoff error has an
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on the absolute value of the total error can therefore be represented as

Total error =
∣∣∣∣∣ f ′(xi ) − f̃ (xi+1) − f̃ (xi−1)

2h

∣∣∣∣∣ ≤ ε

h
+ h 2 M

6
(4.29)

An optimal step size can be determined by differentiating Eq. (4.29), setting the result
equal to zero and solving for

h opt = 3

√
3ε

M
(4.30)

EXAMPLE 4.5 Roundoff and Truncation Errors in Numerical Differentiation

Problem Statement. In Example 4.4, we used a centered difference approximation of
O(h 2) to estimate the first derivative of the following function at x = 0.5,

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

Perform the same computation starting with h = 1. Then progressively divide the step size
by a factor of 10 to demonstrate how roundoff becomes dominant as the step size is reduced.
Relate your results to Eq. (4.30). Recall that the true value of the derivative is −0.9125. 

Solution. We can develop the following M-file to perform the computations and plot the
results. Notice that we pass both the function and its analytical derivative as arguments:

function diffex(func,dfunc,x,n)
format long
dftrue=dfunc(x);
h=1;
H(1)=h;
D(1)=(func(x+h)-func(x-h))/(2*h);
E(1)=abs(dftrue-D(1));

cha01102_ch04_088-122.qxd  12/17/10  8:00 AM  Page 116

116 ROUNDOFF AND TRUNCATION ERRORS

However, because we are using digital computers, the function values do include
roundoff error as in 

f (xi−1) = f̃ (xi−1) + ei−1

f (xi+1) = f̃ (xi+1) + ei+1

where the f̃ ’s are the rounded function values and the e’s are the associated roundoff
errors. Substituting these values into Eq. (4.28) gives

f ′(xi ) = f̃ (xi+1) − f̃ (xi−1)

2h
+ ei+1 − ei−1

2h
− f (3)(ξ)

6
h 2

True Finite-difference Roundoff Truncation
value approximation error error

We can see that the total error of the finite-difference approximation consists of a roundoff
error that decreases with step size and a truncation error that increases with step size.

Assuming that the absolute value of each component of the roundoff error has an
upper bound of ε, the maximum possible value of the difference ei+1 – ei!1 will be 2ε. Fur-
ther, assume that the third derivative has a maximum absolute value of M. An upper bound
on the absolute value of the total error can therefore be represented as

Total error =
∣∣∣∣∣ f ′(xi ) − f̃ (xi+1) − f̃ (xi−1)

2h

∣∣∣∣∣ ≤ ε

h
+ h 2 M

6
(4.29)

An optimal step size can be determined by differentiating Eq. (4.29), setting the result
equal to zero and solving for

h opt = 3

√
3ε

M
(4.30)
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Relate your results to Eq. (4.30). Recall that the true value of the derivative is −0.9125. 

Solution. We can develop the following M-file to perform the computations and plot the
results. Notice that we pass both the function and its analytical derivative as arguments:

function diffex(func,dfunc,x,n)
format long
dftrue=dfunc(x);
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Analiza błędów różniczkowania numerycznego
Błąd całkowity aproksymacji pochodnej pierwszego rzędu przy pomocy centralnego 
ilorazu różnicowego, składa się z: 
‣ błędów zaokrąglenia, które maleją z krokiem 
‣ błędów obcięcia, które zwiększają się wraz z krokiem 

Przyjmując, że bezwzględna wartość każdego składnika błędu zaokrąglenia jest 
ograniczona od góry wartością ε, to maksimum możliwych wartości różnicy ei+1 - ei-1 będzie 
równe 2ε. 

Dalej przyjmując, że trzecia pochodna ma bezwzględną wartość maksymalną o wartości M, 
to górna granica wartości bezwzględnej błędu całkowitego może być przedstawiona w 
postaci: 

Optymalny krok h, może być określony poprzez wyznaczenie pochodnej równania (19) i 
przyrównania wyniku do 0, rozwiązując uzyskane równanie, otrzymuje się zależność:
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An optimal step size can be determined by differentiating Eq. (4.29), setting the result
equal to zero and solving for

h opt = 3

√
3ε

M
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EXAMPLE 4.5 Roundoff and Truncation Errors in Numerical Differentiation
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dftrue=dfunc(x);
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EXAMPLE 4.5 Roundoff and Truncation Errors in Numerical Differentiation

Problem Statement. In Example 4.4, we used a centered difference approximation of
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Perform the same computation starting with h = 1. Then progressively divide the step size
by a factor of 10 to demonstrate how roundoff becomes dominant as the step size is reduced.
Relate your results to Eq. (4.30). Recall that the true value of the derivative is −0.9125. 

Solution. We can develop the following M-file to perform the computations and plot the
results. Notice that we pass both the function and its analytical derivative as arguments:

function diffex(func,dfunc,x,n)
format long
dftrue=dfunc(x);
h=1;
H(1)=h;
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Analiza błędów różniczkowania numerycznego
Zadanie: W poprzednim zadaniu oszacowano pochodną przy pomocy centralnego ilorazu 
różnicowego. Wykonać te same obliczenia dla kroku h = 1 a następnie progresywnie 
zmniejszając krok poprzez jego podział przez 10 zademonstrować jak wraz z redukcją 
kroku, błędy obcięcia stają się dominujące. Uwaga, dokładna wartość pochodnej wynosi 
-0.9125.
def f(x): 
    return -0.1*x**4-0.15*x**3-0.5*x**2-0.25*x+1.2 

def df(x): 
    return -0.4*x**3-0.45*x**2-x-0.25 

n = 11 
x = 0.5 
h = 1.0 
dtrue = df(x) 
H = np.zeros( (n,1) ) 
D = np.zeros( (n,1) ) 
E = np.zeros( (n,1) ) 
H[0] = h; 
D[0] = ( f(x+h) - f(x-h) ) / (2.0*h); 
E[0] = np.abs(dtrue - D[0]); 
for i in range(1, n): 
 h = h/10.0 
 H[i] = h 
 D[i] = (f(x+h) - f(x-h)) / (2.0*h) 
 E[i] = np.abs(dtrue - D[i]) 

L = np.concatenate((H, D, E), axis = 1) 
np.set_printoptions(precision=15, suppress=True) 
print(L)

step size finite difference true error 
  0.1000000000 -0.91600000000000  0.0035000000000 
  0.0100000000 -0.91253500000000  0.0000350000000 
  0.0010000000 -0.91250035000001  0.0000003500000 
  0.0001000000 -0.91250000349985  0.0000000034998 
  0.0000100000 -0.91250000003318  0.0000000000332 
  0.0000010000 -0.91250000000542  0.0000000000054 
  0.0000001000 -0.91249999945031  0.0000000005497 
  0.0000000100 -0.91250000333609  0.0000000033361 
  0.0000000010 -0.91250001998944  0.0000000199894 
  0.0000000001 -0.91250007550059  0.0000000755006 
  0.0000000000 -0.91250340616966  0.0000034061697



Analiza błędów różniczkowania numerycznego
Ponieważ, w zadaniu analizowana jest łatwo różniczkowalna funkcja, można sprawdzić, czy 
uzyskane wyniki są zgodne z równaniem (22). 

Ponieważ dokładność numeryczna systemu PYTHON wynosi około 10-16, można z grubsza 
przyjąć, że górna granica zaokrąglenia wyniesie ε = 0.5x10-16.  

Z zależności (22) wynika: 

co jest tym samym rzędem 1x10-6 jaki został uzyskany z systemu PYTHON.
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for i=2:n
h=h/10;  
H(i)=h;
D(i)=(func(x+h)-func(x-h))/(2*h);
E(i)=abs(dftrue-D(i));

end
L=[H' D' E']';
fprintf('   step size   finite difference    true error\n');
fprintf('%14.10f %16.14f %16.13f\n',L);
loglog(H,E),xlabel('Step Size'),ylabel('Error')
title('Plot of Error Versus Step Size')
format short

The M-file can then be run using the following commands:

>> ff=@(x) -0.1*x^4-0.15*x^3-0.5*x^2-0.25*x+1.2;
>> df=@(x) -0.4*x^3-0.45*x^2-x-0.25;
>> diffex(ff,df,0.5,11)

step size finite difference   true error
1.0000000000 -1.26250000000000  0.3500000000000
0.1000000000 -0.91600000000000  0.0035000000000
0.0100000000 -0.91253500000000  0.0000350000000
0.0010000000 -0.91250035000001  0.0000003500000
0.0001000000 -0.91250000349985  0.0000000034998
0.0000100000 -0.91250000003318  0.0000000000332
0.0000010000 -0.91250000000542  0.0000000000054
0.0000001000 -0.91249999945031  0.0000000005497
0.0000000100 -0.91250000333609  0.0000000033361
0.0000000010 -0.91250001998944  0.0000000199894
0.0000000001 -0.91250007550059  0.0000000755006

As depicted in Fig. 4.12, the results are as expected. At first, roundoff is minimal and the
estimate is dominated by truncation error. Hence, as in Eq. (4.29), the total error drops by a fac-
tor of 100 each time we divide the step by 10. However, starting at about h = 0.0001, we see
roundoff error begin to creep in and erode the rate at which the error diminishes. A minimum
error is reached at h = 10–6. Beyond this point, the error increases as roundoff dominates.

Because we are dealing with an easily differentiable function, we can also investigate
whether these results are consistent with Eq. (4.30). First, we can estimate M by evaluating
the function’s third derivative as 

M =
∣∣ f (3)(0.5)

∣∣ = |−2.4(0.5) − 0.9| = 2.1

Because MATLAB has a precision of about 15 to 16 base-10 digits, a rough estimate of the
upper bound on roundoff would be about ε = 0.5 × 10−16. Substituting these values into
Eq. (4.30) gives

h opt = 3

√
3(0.5 × 10−16)

2.1
= 4.3 × 10−6

which is on the same order as the result of 1 × 10–6 obtained with MATLAB.
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Formuły różniczkowania o wysokiej dokładności
Progresywny szereg Tylora może być zapisany jak poprzednio (13): 

i przekształcony do postaci: 

dotychczas, wyraz drugiej pochodnej był obcinany (15): 

W przeciwieństwie do tego podejścia, tym razem wyraz z drugiej pochodnej zostanie 
zachowany. Druga pochodna określona była wzorem (18): 

Podstawiając (26) do (24), uzyskuje się: 

a po uporządkowaniu:

526 NUMERICAL DIFFERENTIATION

derivation of these formulas. We will now illustrate how high-accuracy finite-difference for-
mulas can be generated by including additional terms from the Taylor series expansion.

For example, the forward Taylor series expansion can be written as [recall Eq. (4.13)]

f (xi+1) = f (xi ) + f ′(xi )h + f ′′(xi )

2!
h 2 + · · · (21.12)

which can be solved for

f ′(xi ) = f (xi+1) − f (xi )

h
− f ′′(xi )

2!
h + O(h 2) (21.13)

In Chap. 4, we truncated this result by excluding the second- and higher-derivative terms
and were thus left with a forward-difference formula:

f ′(xi ) = f (xi+1) − f (xi )

h
+ O(h ) (21.14)

In contrast to this approach, we now retain the second-derivative term by substituting
the following forward-difference approximation of the second derivative [recall Eq. (4.27)]:

f ′′(xi ) = f (xi+2) − 2 f (xi+1) + f (xi )

h 2
+ O(h ) (21.15)

into Eq. (21.13) to yield

f ′(xi ) = f (xi+1) − f (xi )

h
− f (xi+2) − 2 f (xi+1) + f (xi )

2h 2
h + O(h 2) (21.16)

or, by collecting terms:

f ′(xi ) = − f (xi+2) + 4 f (xi+1) − 3 f (xi )

2h
+ O(h 2) (21.17)

Notice that inclusion of the second-derivative term has improved the accuracy to O(h 2).
Similar improved versions can be developed for the backward and centered formulas as
well as for the approximations of higher-order derivatives. The formulas are summarized in
Fig. 21.3 through Fig. 21.5 along with the lower-order versions from Chap. 4. The follow-
ing example illustrates the utility of these formulas for estimating derivatives. 

EXAMPLE 21.1 High-Accuracy Differentiation Formulas

Problem Statement. Recall that in Example 4.4 we estimated the derivative of

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

at x = 0.5 using finite-differences and a step size of h = 0.25. The results are summarized
in the following table. Note that the errors are based on the true value of
f ′(0.5) = −0.9125.

Backward Centered Forward
O(h) O(h2) O(h)

Estimate −0.714 −0.934 −1.155
εt 21.7% −2.4% −26.5%

Repeat this computation, but employ the high-accuracy formulas from Fig. 21.3 through
Fig. 21.5.
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Problem Statement. Recall that in Example 4.4 we estimated the derivative of

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

at x = 0.5 using finite-differences and a step size of h = 0.25. The results are summarized
in the following table. Note that the errors are based on the true value of
f ′(0.5) = −0.9125.

Backward Centered Forward
O(h) O(h2) O(h)

Estimate −0.714 −0.934 −1.155
εt 21.7% −2.4% −26.5%

Repeat this computation, but employ the high-accuracy formulas from Fig. 21.3 through
Fig. 21.5.
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derivation of these formulas. We will now illustrate how high-accuracy finite-difference for-
mulas can be generated by including additional terms from the Taylor series expansion.

For example, the forward Taylor series expansion can be written as [recall Eq. (4.13)]

f (xi+1) = f (xi ) + f ′(xi )h + f ′′(xi )

2!
h 2 + · · · (21.12)

which can be solved for

f ′(xi ) = f (xi+1) − f (xi )

h
− f ′′(xi )

2!
h + O(h 2) (21.13)

In Chap. 4, we truncated this result by excluding the second- and higher-derivative terms
and were thus left with a forward-difference formula:

f ′(xi ) = f (xi+1) − f (xi )

h
+ O(h ) (21.14)

In contrast to this approach, we now retain the second-derivative term by substituting
the following forward-difference approximation of the second derivative [recall Eq. (4.27)]:

f ′′(xi ) = f (xi+2) − 2 f (xi+1) + f (xi )

h 2
+ O(h ) (21.15)

into Eq. (21.13) to yield

f ′(xi ) = f (xi+1) − f (xi )

h
− f (xi+2) − 2 f (xi+1) + f (xi )

2h 2
h + O(h 2) (21.16)

or, by collecting terms:

f ′(xi ) = − f (xi+2) + 4 f (xi+1) − 3 f (xi )

2h
+ O(h 2) (21.17)

Notice that inclusion of the second-derivative term has improved the accuracy to O(h 2).
Similar improved versions can be developed for the backward and centered formulas as
well as for the approximations of higher-order derivatives. The formulas are summarized in
Fig. 21.3 through Fig. 21.5 along with the lower-order versions from Chap. 4. The follow-
ing example illustrates the utility of these formulas for estimating derivatives. 

EXAMPLE 21.1 High-Accuracy Differentiation Formulas

Problem Statement. Recall that in Example 4.4 we estimated the derivative of

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

at x = 0.5 using finite-differences and a step size of h = 0.25. The results are summarized
in the following table. Note that the errors are based on the true value of
f ′(0.5) = −0.9125.

Backward Centered Forward
O(h) O(h2) O(h)

Estimate −0.714 −0.934 −1.155
εt 21.7% −2.4% −26.5%

Repeat this computation, but employ the high-accuracy formulas from Fig. 21.3 through
Fig. 21.5.
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derivation of these formulas. We will now illustrate how high-accuracy finite-difference for-
mulas can be generated by including additional terms from the Taylor series expansion.

For example, the forward Taylor series expansion can be written as [recall Eq. (4.13)]

f (xi+1) = f (xi ) + f ′(xi )h + f ′′(xi )

2!
h 2 + · · · (21.12)

which can be solved for

f ′(xi ) = f (xi+1) − f (xi )

h
− f ′′(xi )

2!
h + O(h 2) (21.13)

In Chap. 4, we truncated this result by excluding the second- and higher-derivative terms
and were thus left with a forward-difference formula:

f ′(xi ) = f (xi+1) − f (xi )

h
+ O(h ) (21.14)

In contrast to this approach, we now retain the second-derivative term by substituting
the following forward-difference approximation of the second derivative [recall Eq. (4.27)]:

f ′′(xi ) = f (xi+2) − 2 f (xi+1) + f (xi )

h 2
+ O(h ) (21.15)

into Eq. (21.13) to yield

f ′(xi ) = f (xi+1) − f (xi )

h
− f (xi+2) − 2 f (xi+1) + f (xi )

2h 2
h + O(h 2) (21.16)

or, by collecting terms:

f ′(xi ) = − f (xi+2) + 4 f (xi+1) − 3 f (xi )

2h
+ O(h 2) (21.17)

Notice that inclusion of the second-derivative term has improved the accuracy to O(h 2).
Similar improved versions can be developed for the backward and centered formulas as
well as for the approximations of higher-order derivatives. The formulas are summarized in
Fig. 21.3 through Fig. 21.5 along with the lower-order versions from Chap. 4. The follow-
ing example illustrates the utility of these formulas for estimating derivatives. 

EXAMPLE 21.1 High-Accuracy Differentiation Formulas

Problem Statement. Recall that in Example 4.4 we estimated the derivative of

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

at x = 0.5 using finite-differences and a step size of h = 0.25. The results are summarized
in the following table. Note that the errors are based on the true value of
f ′(0.5) = −0.9125.

Backward Centered Forward
O(h) O(h2) O(h)

Estimate −0.714 −0.934 −1.155
εt 21.7% −2.4% −26.5%

Repeat this computation, but employ the high-accuracy formulas from Fig. 21.3 through
Fig. 21.5.
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derivation of these formulas. We will now illustrate how high-accuracy finite-difference for-
mulas can be generated by including additional terms from the Taylor series expansion.

For example, the forward Taylor series expansion can be written as [recall Eq. (4.13)]

f (xi+1) = f (xi ) + f ′(xi )h + f ′′(xi )

2!
h 2 + · · · (21.12)

which can be solved for

f ′(xi ) = f (xi+1) − f (xi )

h
− f ′′(xi )

2!
h + O(h 2) (21.13)

In Chap. 4, we truncated this result by excluding the second- and higher-derivative terms
and were thus left with a forward-difference formula:

f ′(xi ) = f (xi+1) − f (xi )

h
+ O(h ) (21.14)

In contrast to this approach, we now retain the second-derivative term by substituting
the following forward-difference approximation of the second derivative [recall Eq. (4.27)]:

f ′′(xi ) = f (xi+2) − 2 f (xi+1) + f (xi )

h 2
+ O(h ) (21.15)

into Eq. (21.13) to yield

f ′(xi ) = f (xi+1) − f (xi )

h
− f (xi+2) − 2 f (xi+1) + f (xi )

2h 2
h + O(h 2) (21.16)

or, by collecting terms:

f ′(xi ) = − f (xi+2) + 4 f (xi+1) − 3 f (xi )

2h
+ O(h 2) (21.17)

Notice that inclusion of the second-derivative term has improved the accuracy to O(h 2).
Similar improved versions can be developed for the backward and centered formulas as
well as for the approximations of higher-order derivatives. The formulas are summarized in
Fig. 21.3 through Fig. 21.5 along with the lower-order versions from Chap. 4. The follow-
ing example illustrates the utility of these formulas for estimating derivatives. 

EXAMPLE 21.1 High-Accuracy Differentiation Formulas

Problem Statement. Recall that in Example 4.4 we estimated the derivative of

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

at x = 0.5 using finite-differences and a step size of h = 0.25. The results are summarized
in the following table. Note that the errors are based on the true value of
f ′(0.5) = −0.9125.

Backward Centered Forward
O(h) O(h2) O(h)

Estimate −0.714 −0.934 −1.155
εt 21.7% −2.4% −26.5%

Repeat this computation, but employ the high-accuracy formulas from Fig. 21.3 through
Fig. 21.5.
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derivation of these formulas. We will now illustrate how high-accuracy finite-difference for-
mulas can be generated by including additional terms from the Taylor series expansion.

For example, the forward Taylor series expansion can be written as [recall Eq. (4.13)]

f (xi+1) = f (xi ) + f ′(xi )h + f ′′(xi )

2!
h 2 + · · · (21.12)

which can be solved for

f ′(xi ) = f (xi+1) − f (xi )

h
− f ′′(xi )

2!
h + O(h 2) (21.13)

In Chap. 4, we truncated this result by excluding the second- and higher-derivative terms
and were thus left with a forward-difference formula:

f ′(xi ) = f (xi+1) − f (xi )

h
+ O(h ) (21.14)

In contrast to this approach, we now retain the second-derivative term by substituting
the following forward-difference approximation of the second derivative [recall Eq. (4.27)]:

f ′′(xi ) = f (xi+2) − 2 f (xi+1) + f (xi )

h 2
+ O(h ) (21.15)

into Eq. (21.13) to yield

f ′(xi ) = f (xi+1) − f (xi )

h
− f (xi+2) − 2 f (xi+1) + f (xi )

2h 2
h + O(h 2) (21.16)

or, by collecting terms:

f ′(xi ) = − f (xi+2) + 4 f (xi+1) − 3 f (xi )

2h
+ O(h 2) (21.17)

Notice that inclusion of the second-derivative term has improved the accuracy to O(h 2).
Similar improved versions can be developed for the backward and centered formulas as
well as for the approximations of higher-order derivatives. The formulas are summarized in
Fig. 21.3 through Fig. 21.5 along with the lower-order versions from Chap. 4. The follow-
ing example illustrates the utility of these formulas for estimating derivatives. 

EXAMPLE 21.1 High-Accuracy Differentiation Formulas

Problem Statement. Recall that in Example 4.4 we estimated the derivative of

f (x) = −0.1x4 − 0.15x3 − 0.5x2 − 0.25x + 1.2

at x = 0.5 using finite-differences and a step size of h = 0.25. The results are summarized
in the following table. Note that the errors are based on the true value of
f ′(0.5) = −0.9125.

Backward Centered Forward
O(h) O(h2) O(h)

Estimate −0.714 −0.934 −1.155
εt 21.7% −2.4% −26.5%

Repeat this computation, but employ the high-accuracy formulas from Fig. 21.3 through
Fig. 21.5.
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Formuły różniczkowania o wysokiej dokładności
W podobny sposób wyprowadzone mogą być ilorazy: regresywne i centralne, również dla 
pochodnych wyższego rzędu. Poniżej zestawiono ilorazy progresywne:
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FIGURE 21.3
Forward finite-difference formulas: two versions are presented for each derivative. The latter version
incorporates more terms of the Taylor series expansion and is, consequently, more accurate.

First Derivative Error

f ′ (xi) = O(h )

f ′ (xi) = O(h 2)

Second Derivative

f ′′ (xi) = O(h )

f ′′ (xi) = O(h 2)

Third Derivative

f ′′′ (xi) = O(h )

f ′′′ (xi) = O(h 2)

Fourth Derivative

f ′′′′ (xi) = O(h )

f ′′′′ (xi) = O(h 2)
−2 f (xi+5) + 11 f (xi+4) − 24 f (xi+3) + 26 f (xi+2) − 14 f (xi+1) + 3 f (xi)

h 4

f (xi+4) − 4 f (xi+3) + 6 f (xi+2) − 4 f (xi+1) + f (xi)

h 4

−3 f (xi+4) + 14 f (xi+3) − 24 f (xi+2) + 18 f (xi+1) − 5 f (xi)

2h 3

f (xi+3) − 3 f (xi+2) + 3 f (xi+1) − f (xi)

h 3

− f (xi+3) + 4 f (xi+2) − 5 f (xi+1) + 2 f (xi)

h 2

f (xi+2) − 2 f (xi+1) + f (xi)

h 2

−f (xi+2) + 4 f (xi+1) − 3 f (xi)

2h

f (xi+1) − f (xi)

h

Solution. The data needed for this example are

xi−2 = 0 f (xi−2) = 1.2

xi−1 = 0.25 f (xi−1) = 1.1035156

xi = 0.5 f (xi ) = 0.925

xi+1 = 0.75 f (xi+1) = 0.6363281

xi+2 = 1 f (xi+2) = 0.2

The forward difference of accuracy O(h 2) is computed as (Fig. 21.3)

f ′(0.5) = −0.2 + 4(0.6363281) − 3(0.925)

2(0.25)
= −0.859375 εt = 5.82%

The backward difference of accuracy O(h 2) is computed as (Fig. 21.4)

f ′(0.5) = 3(0.925) − 4(1.1035156) + 1.2
2(0.25)

= −0.878125 εt = 3.77%

The centered difference of accuracy O(h 4) is computed as (Fig. 21.5)

f ′(0.5) = −0.2 + 8(0.6363281) − 8(1.1035156) + 1.2
12(0.25)

= −0.9125 εt = 0%
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Formuły różniczkowania o wysokiej dokładności
Poniżej zestawiono ilorazy regresywne:528 NUMERICAL DIFFERENTIATION

FIGURE 21.4
Backward finite-difference formulas: two versions are presented for each derivative. The latter
version incorporates more terms of the Taylor series expansion and is, consequently, more accurate.

First Derivative Error

f ′ (xi) = O(h )

f ′ (xi) = O(h 2)

Second Derivative

f ′′ (xi) = O(h )

f ′′ (xi) = O(h 2)

Third Derivative

f ′′′ (xi) = O(h )

f ′′′ (xi) = O(h 2)

Fourth Derivative

f ′′′′ (xi) = O(h )

f ′′′′ (xi) = O(h 2)
3 f (xi) − 14 f (xi−1) + 26 f (xi−2) − 24 f (xi−3) + 11 f (xi−4) − 2f (xi−5)

h 4

f (xi) − 4 f (xi−1) + 6 f (xi−2) − 4 f (xi−3) + f (xi−4)

h 4

5 f (xi) − 18 f (xi−1) + 24 f (xi−2) − 14 f (xi−3) + 3 f (xi−4)

2h 3

f (xi) − 3 f (xi−1) + 3 f (xi−2) − f (xi−3)

h 3

2 f (xi) − 5 f (xi−1) + 4 f (xi−2) − f (xi−3)

h 2

f (xi) − 2 f (xi−1) + f (xi−2)

h 2

3 f (xi) − 4 f (xi−1) + f (xi−2)

2h

f (xi) − f (xi−1)

h

As expected, the errors for the forward and backward differences are considerably
more accurate than the results from Example 4.4. However, surprisingly, the centered dif-
ference yields the exact derivative at x = 0.5. This is because the formula based on the
Taylor series is equivalent to passing a fourth-order polynomial through the data points.

21.3 RICHARDSON EXTRAPOLATION
To this point, we have seen that there are two ways to improve derivative estimates when
employing finite differences: (1) decrease the step size or (2) use a higher-order formula
that employs more points. A third approach, based on Richardson extrapolation, uses two
derivative estimates to compute a third, more accurate, approximation.

Recall from Sec. 20.2.1 that Richardson extrapolation provided a means to obtain an
improved integral estimate by the formula [Eq. (20.4)]

I = I (h 2) + 1
(h 1/ h 2)2 − 1

[I (h 2) − I (h 1)] (21.18)

where I (h 1) and I (h 2) are integral estimates using two step sizes: h 1 and h 2. Because of
its convenience when expressed as a computer algorithm, this formula is usually written
for the case where h 2 = h 1/2, as in

I = 4
3

I (h 2) − 1
3

I (h 1) (21.19)
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Poniżej zestawiono ilorazy centralne:21.3 RICHARDSON EXTRAPOLATION 529

In a similar fashion, Eq. (21.19) can be written for derivatives as

D = 4
3

D(h 2) − 1
3

D(h 1) (21.20)

For centered difference approximations with O(h 2), the application of this formula will
yield a new derivative estimate of O(h 4).

EXAMPLE 21.2 Richardson Extrapolation

Problem Statement. Using the same function as in Example 21.1, estimate the first de-
rivative at x = 0.5 employing step sizes of h 1 = 0.5 and h 2 = 0.25. Then use Eq. (21.20)
to compute an improved estimate with Richardson extrapolation. Recall that the true value
is −0.9125.

Solution. The first-derivative estimates can be computed with centered differences as

D(0.5) = 0.2 − 1.2
1

= −1.0 εt = −9.6%

and

D(0.25) = 0.6363281 − 1.103516
0.5

= −0.934375 εt = −2.4%

First Derivative Error

f ′ (xi) = O(h 2)

f ′ (xi) = O(h 4)

Second Derivative

f ′′ (xi) = O(h 2)

f ′′ (xi) = O(h 4)

Third Derivative

f ′′′ (xi) = O(h 2)

f ′′′ (xi) = O(h 4)

Fourth Derivative

f ′′′′ (xi) = O(h 2)

f ′′′′ (xi) = O(h 4)
− f (xi+3) + 12 f (xi+2) − 39 f (xi+1) + 56 f (xi) − 39 f (xi−1) + 12 f (xi−2) − f (xi−3)

6h 4

f (xi+2) − 4 f (xi+1) + 6 f (xi) − 4 f (xi−1) + f (xi−2)

h 4

− f (xi+3) + 8 f (xi+2) − 13 f (xi+1) + 13 f (xi−1) − 8 f (xi−2) + f (xi−3)

8h 3

f (xi+2) − 2 f (xi+1) + 2 f (xi−1) − f (xi−2)

2h 3

−f (xi+2) + 16 f (xi+1) − 30 f (xi) + 16 f (xi−1) − f (xi−2)

12h 2

f (xi+1) − 2 f (xi) + f (xi−1)

h 2

− f (xi+2) + 8 f (xi+1) − 8 f (xi−1) + f (xi−2)

12h

f (xi+1) − f (xi−1)

2h

FIGURE 21.5
Centered finite-difference formulas: two versions are presented for each derivative. The latter
version incorporates more terms of the Taylor series expansion and is, consequently, more
accurate.
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Formuły różniczkowania o wysokiej dokładności
Zadanie: W pierwszym zadaniu oszacowano pochodną przy pomocy centralnego ilorazu 
różnicowego dla kroku h = 0.5 i h = 0.25. Powtórzyć obliczenia stosując dokładniejsze 
wzory. Uwaga, dokładna wartość pochodnej wynosi -0.9125. 

Wymagane dane: 

Progresywny iloraz różnicowy O(h2): 

Regresywny iloraz różnicowy O(h2): 

Centralny iloraz różnicowy O(h4):
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FIGURE 21.3
Forward finite-difference formulas: two versions are presented for each derivative. The latter version
incorporates more terms of the Taylor series expansion and is, consequently, more accurate.

First Derivative Error

f ′ (xi) = O(h )

f ′ (xi) = O(h 2)

Second Derivative

f ′′ (xi) = O(h )

f ′′ (xi) = O(h 2)

Third Derivative

f ′′′ (xi) = O(h )

f ′′′ (xi) = O(h 2)

Fourth Derivative

f ′′′′ (xi) = O(h )

f ′′′′ (xi) = O(h 2)
−2 f (xi+5) + 11 f (xi+4) − 24 f (xi+3) + 26 f (xi+2) − 14 f (xi+1) + 3 f (xi)

h 4

f (xi+4) − 4 f (xi+3) + 6 f (xi+2) − 4 f (xi+1) + f (xi)

h 4

−3 f (xi+4) + 14 f (xi+3) − 24 f (xi+2) + 18 f (xi+1) − 5 f (xi)

2h 3

f (xi+3) − 3 f (xi+2) + 3 f (xi+1) − f (xi)

h 3

− f (xi+3) + 4 f (xi+2) − 5 f (xi+1) + 2 f (xi)

h 2

f (xi+2) − 2 f (xi+1) + f (xi)

h 2

−f (xi+2) + 4 f (xi+1) − 3 f (xi)

2h

f (xi+1) − f (xi)

h

Solution. The data needed for this example are

xi−2 = 0 f (xi−2) = 1.2

xi−1 = 0.25 f (xi−1) = 1.1035156

xi = 0.5 f (xi ) = 0.925

xi+1 = 0.75 f (xi+1) = 0.6363281

xi+2 = 1 f (xi+2) = 0.2

The forward difference of accuracy O(h 2) is computed as (Fig. 21.3)

f ′(0.5) = −0.2 + 4(0.6363281) − 3(0.925)

2(0.25)
= −0.859375 εt = 5.82%

The backward difference of accuracy O(h 2) is computed as (Fig. 21.4)

f ′(0.5) = 3(0.925) − 4(1.1035156) + 1.2
2(0.25)

= −0.878125 εt = 3.77%

The centered difference of accuracy O(h 4) is computed as (Fig. 21.5)

f ′(0.5) = −0.2 + 8(0.6363281) − 8(1.1035156) + 1.2
12(0.25)

= −0.9125 εt = 0%
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FIGURE 21.3
Forward finite-difference formulas: two versions are presented for each derivative. The latter version
incorporates more terms of the Taylor series expansion and is, consequently, more accurate.

First Derivative Error

f ′ (xi) = O(h )

f ′ (xi) = O(h 2)

Second Derivative

f ′′ (xi) = O(h )

f ′′ (xi) = O(h 2)

Third Derivative

f ′′′ (xi) = O(h )

f ′′′ (xi) = O(h 2)

Fourth Derivative

f ′′′′ (xi) = O(h )

f ′′′′ (xi) = O(h 2)
−2 f (xi+5) + 11 f (xi+4) − 24 f (xi+3) + 26 f (xi+2) − 14 f (xi+1) + 3 f (xi)

h 4

f (xi+4) − 4 f (xi+3) + 6 f (xi+2) − 4 f (xi+1) + f (xi)

h 4

−3 f (xi+4) + 14 f (xi+3) − 24 f (xi+2) + 18 f (xi+1) − 5 f (xi)

2h 3

f (xi+3) − 3 f (xi+2) + 3 f (xi+1) − f (xi)

h 3

− f (xi+3) + 4 f (xi+2) − 5 f (xi+1) + 2 f (xi)

h 2

f (xi+2) − 2 f (xi+1) + f (xi)

h 2

−f (xi+2) + 4 f (xi+1) − 3 f (xi)

2h

f (xi+1) − f (xi)

h

Solution. The data needed for this example are

xi−2 = 0 f (xi−2) = 1.2

xi−1 = 0.25 f (xi−1) = 1.1035156

xi = 0.5 f (xi ) = 0.925

xi+1 = 0.75 f (xi+1) = 0.6363281

xi+2 = 1 f (xi+2) = 0.2

The forward difference of accuracy O(h 2) is computed as (Fig. 21.3)

f ′(0.5) = −0.2 + 4(0.6363281) − 3(0.925)

2(0.25)
= −0.859375 εt = 5.82%

The backward difference of accuracy O(h 2) is computed as (Fig. 21.4)

f ′(0.5) = 3(0.925) − 4(1.1035156) + 1.2
2(0.25)

= −0.878125 εt = 3.77%

The centered difference of accuracy O(h 4) is computed as (Fig. 21.5)

f ′(0.5) = −0.2 + 8(0.6363281) − 8(1.1035156) + 1.2
12(0.25)

= −0.9125 εt = 0%
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FIGURE 21.3
Forward finite-difference formulas: two versions are presented for each derivative. The latter version
incorporates more terms of the Taylor series expansion and is, consequently, more accurate.

First Derivative Error

f ′ (xi) = O(h )

f ′ (xi) = O(h 2)

Second Derivative

f ′′ (xi) = O(h )

f ′′ (xi) = O(h 2)

Third Derivative

f ′′′ (xi) = O(h )

f ′′′ (xi) = O(h 2)

Fourth Derivative

f ′′′′ (xi) = O(h )

f ′′′′ (xi) = O(h 2)
−2 f (xi+5) + 11 f (xi+4) − 24 f (xi+3) + 26 f (xi+2) − 14 f (xi+1) + 3 f (xi)

h 4

f (xi+4) − 4 f (xi+3) + 6 f (xi+2) − 4 f (xi+1) + f (xi)

h 4

−3 f (xi+4) + 14 f (xi+3) − 24 f (xi+2) + 18 f (xi+1) − 5 f (xi)

2h 3

f (xi+3) − 3 f (xi+2) + 3 f (xi+1) − f (xi)

h 3

− f (xi+3) + 4 f (xi+2) − 5 f (xi+1) + 2 f (xi)

h 2

f (xi+2) − 2 f (xi+1) + f (xi)

h 2

−f (xi+2) + 4 f (xi+1) − 3 f (xi)

2h

f (xi+1) − f (xi)

h

Solution. The data needed for this example are

xi−2 = 0 f (xi−2) = 1.2

xi−1 = 0.25 f (xi−1) = 1.1035156

xi = 0.5 f (xi ) = 0.925

xi+1 = 0.75 f (xi+1) = 0.6363281

xi+2 = 1 f (xi+2) = 0.2

The forward difference of accuracy O(h 2) is computed as (Fig. 21.3)

f ′(0.5) = −0.2 + 4(0.6363281) − 3(0.925)

2(0.25)
= −0.859375 εt = 5.82%

The backward difference of accuracy O(h 2) is computed as (Fig. 21.4)

f ′(0.5) = 3(0.925) − 4(1.1035156) + 1.2
2(0.25)

= −0.878125 εt = 3.77%

The centered difference of accuracy O(h 4) is computed as (Fig. 21.5)

f ′(0.5) = −0.2 + 8(0.6363281) − 8(1.1035156) + 1.2
12(0.25)

= −0.9125 εt = 0%
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f ′(0.5) = −0.2 + 4(0.6363281) − 3(0.925)

2(0.25)
= −0.859375 εt = 5.82%

The backward difference of accuracy O(h 2) is computed as (Fig. 21.4)

f ′(0.5) = 3(0.925) − 4(1.1035156) + 1.2
2(0.25)

= −0.878125 εt = 3.77%

The centered difference of accuracy O(h 4) is computed as (Fig. 21.5)

f ′(0.5) = −0.2 + 8(0.6363281) − 8(1.1035156) + 1.2
12(0.25)

= −0.9125 εt = 0%

cha01102_ch21_521-546.qxd  12/17/10  9:22 AM  Page 527

Uwaga: 0% ponieważ funkcja  
f(x) jest wielomianem 4 stopnia.



Ekstrapolacja Richardsona
Przedstawione sposoby poprawy dokładności różniczkowania numerycznego to: 
‣ zmniejszenie kroku  
‣ użycie formuły wyższego rzędu, która wykorzystuje większą ilość punktów 

Trzecim sposobem jest zastosowanie ekstrapolacji Richardsona. 

Dla centralnych ilorazów różnicowych, o błędzie obcięcia równym O(h2), formuła (29) 
wyznaczy przybliżenie pochodnej z błędem O(h4). 

Uwaga: Podobnie jak dla obliczania całek, dokładność pochodnej może być poprawiana 
poprzez zastosowanie schematu Romberga.
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In a similar fashion, Eq. (21.19) can be written for derivatives as

D = 4
3

D(h 2) − 1
3

D(h 1) (21.20)

For centered difference approximations with O(h 2), the application of this formula will
yield a new derivative estimate of O(h 4).

EXAMPLE 21.2 Richardson Extrapolation

Problem Statement. Using the same function as in Example 21.1, estimate the first de-
rivative at x = 0.5 employing step sizes of h 1 = 0.5 and h 2 = 0.25. Then use Eq. (21.20)
to compute an improved estimate with Richardson extrapolation. Recall that the true value
is −0.9125.

Solution. The first-derivative estimates can be computed with centered differences as

D(0.5) = 0.2 − 1.2
1

= −1.0 εt = −9.6%

and

D(0.25) = 0.6363281 − 1.103516
0.5

= −0.934375 εt = −2.4%

First Derivative Error

f ′ (xi) = O(h 2)

f ′ (xi) = O(h 4)

Second Derivative

f ′′ (xi) = O(h 2)

f ′′ (xi) = O(h 4)

Third Derivative

f ′′′ (xi) = O(h 2)

f ′′′ (xi) = O(h 4)

Fourth Derivative

f ′′′′ (xi) = O(h 2)

f ′′′′ (xi) = O(h 4)
− f (xi+3) + 12 f (xi+2) − 39 f (xi+1) + 56 f (xi) − 39 f (xi−1) + 12 f (xi−2) − f (xi−3)

6h 4

f (xi+2) − 4 f (xi+1) + 6 f (xi) − 4 f (xi−1) + f (xi−2)

h 4

− f (xi+3) + 8 f (xi+2) − 13 f (xi+1) + 13 f (xi−1) − 8 f (xi−2) + f (xi−3)

8h 3

f (xi+2) − 2 f (xi+1) + 2 f (xi−1) − f (xi−2)

2h 3

−f (xi+2) + 16 f (xi+1) − 30 f (xi) + 16 f (xi−1) − f (xi−2)

12h 2

f (xi+1) − 2 f (xi) + f (xi−1)

h 2

− f (xi+2) + 8 f (xi+1) − 8 f (xi−1) + f (xi−2)

12h

f (xi+1) − f (xi−1)

2h

FIGURE 21.5
Centered finite-difference formulas: two versions are presented for each derivative. The latter
version incorporates more terms of the Taylor series expansion and is, consequently, more
accurate.
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(29)



Ekstrapolacja Richardsona
Zadanie: Używając funkcji z zadania 1 obliczyć pierwszą pochodną w punkcie x = 0.5, 
wykorzystując kroki h = 0.5 oraz h = 0.25. Zastosować metodę ekstrapolacji Richardsona. 
Uwaga, dokładna wartość pochodnej wynosi -0.9125. 

Pierwsza pochodna obliczona przy pomocy centralnego ilorazu różnicowego: 

Ekstrapolacja Richardsona:
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FIGURE 21.5
Centered finite-difference formulas: two versions are presented for each derivative. The latter
version incorporates more terms of the Taylor series expansion and is, consequently, more
accurate.
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The improved estimate can be determined by applying Eq. (21.20) to give

D = 4
3
(−0.934375) − 1

3
(−1) = −0.9125

which for the present case is exact.

The previous example yielded an exact result because the function being analyzed was
a fourth-order polynomial. The exact outcome was due to the fact that Richardson extrap-
olation is actually equivalent to fitting a higher-order polynomial through the data and then
evaluating the derivatives by centered divided differences. Thus, the present case matched
the derivative of the fourth-order polynomial precisely. For most other functions, of course,
this would not occur, and our derivative estimate would be improved but not exact. Conse-
quently, as was the case for the application of Richardson extrapolation, the approach can
be applied iteratively using a Romberg algorithm until the result falls below an acceptable
error criterion. 

21.4 DERIVATIVES OF UNEQUALLY SPACED DATA 
The approaches discussed to this point are primarily designed to determine the derivative of
a given function. For the finite-difference approximations of Sec. 21.2, the data had to be
evenly spaced. For the Richardson extrapolation technique of Sec. 21.3, the data also had to
be evenly spaced and generated for successively halved intervals. Such control of data spac-
ing is usually available only in cases where we can use a function to generate a table of values.

In contrast, empirically derived information—that is, data from experiments or field
studies—are often collected at unequal intervals. Such information cannot be analyzed
with the techniques discussed to this point.

One way to handle nonequispaced data is to fit a Lagrange interpolating polynomial
[recall Eq. (17.21)] to a set of adjacent points that bracket the location value at which you
want to evaluate the derivative. Remember that this polynomial does not require that the
points be equispaced. The polynomial can then be differentiated analytically to yield a for-
mula that can be used to estimate the derivative.

For example, you can fit a second-order Lagrange polynomial to three adjacent points
(x0, y0), (x1, y1), and (x2, y2). Differentiating the polynomial yields:

f ′(x) = f (x0)
2x − x1 − x2

(x0 − x1)(x0 − x2)
+ f (x1)

2x − x0 − x2

(x1 − x0)(x1 − x2)

+ f (x2)
2x − x0 − x1

(x2 − x0)(x2 − x1)
(21.21)

where x is the value at which you want to estimate the derivative. Although this equation is
certainly more complicated than the first-derivative approximation from Fig. 21.3 through
Fig. 21.5, it has some important advantages. First, it can provide estimates anywhere
within the range prescribed by the three points. Second, the points themselves do not have
to be equally spaced. Third, the derivative estimate is of the same accuracy as the centered
difference [Eq. (4.25)]. In fact, for equispaced points, Eq. (21.21) evaluated at x = x1 re-
duces to Eq. (4.25).

530 NUMERICAL DIFFERENTIATION
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